
www.elsevier.com/locate/coastaleng
Coastal Engineering 51
Wave momentum flux parameter: a descriptor for

nearshore waves

Steven A. Hughes*

US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 3909 Halls Ferry Road,

Vicksburg, MS 39180-6199, USA

Received 23 April 2003; received in revised form 29 June 2004; accepted 16 July 2004

Available online 7 October 2004
Abstract

A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is

proposed for characterizing the wave contribution to nearshore coastal processes on beaches and at coastal structures. This

parameter has units of force per unit crest width, and it characterizes flow kinematics in nonbreaking waves at a given depth

better than other wave parameters that do not distinguish increased wave nonlinearity. The wave momentum flux parameter can

be defined and estimated for periodic and nonperiodic (transient) waves. Thus, it has potential application for correlating to

processes responding to different types of waves. This paper derives the wave momentum flux parameter for linear, extended

linear, and solitary waves; and it presents an empirical formula estimating the parameter for nonlinear steady waves of

permanent form. Guidance is suggested for application to irregular waves. It is anticipated that the wave momentum flux

parameter may prove useful for developing improved semiempirical formulas to describe nearshore processes and wave/

structure interactions such as wave runup, overtopping, reflection, transmission, and armor stability. Surf zone processes where

waves break as plunging or spilling breakers may not benefit from use of the wave momentum flux parameter because the

breaking processes effectively negates the advantage of characterizing the wave nonlinearity.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Coastal shore protection and navigation struc-

tures are designed to withstand waves up to an

expected level (sometimes referred to as the bdesign
waveQ), and there are often multiple structure design
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criteria associated with the specified design wave.

For example, a rubble-mound breakwater design

must assure armor stability; and there may be

specified values for maximum wave runup, allow-

able average rate of wave overtopping, and max-

imum height of transmitted waves. These design

criteria are dependent on project functional require-

ments, so specified criteria may vary between

projects.
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Table 2

Common dimensionless wave parameters

Parameter Value

Relative depth h/L; h/gT2; kh

Relative wave height H/h

Wave steepness H/L; H/Lo; H/gT2

Deepwater wave steepness Ho/Lo; Ho/gT
2

Local Iribarren number, n tanaffiffiffiffiffiffiffi
H=L

p

Deepwater Iribarren number, no
tanaffiffiffiffiffiffiffiffiffi
Ho=Lo

p

or tanaffiffiffiffiffiffiffiffi
H=Lo

p
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The hydrodynamic interaction of waves with

coastal structures is complex, and steady progress

has been made toward understanding wave/structure

interactions. However, some engineering aspects of

coastal structure design are still not fully described by

theory. Examples include rubble-mound armor stabil-

ity, wave runup on permeable slopes, and wave

overtopping of protective structures.

Engineers have established useful design guidance

by augmenting theoretical reasoning with empirical

coefficients determined from small-scale laboratory

testing. The balance between theoretical and empirical

contribution to coastal structure design guidance

varies widely. For example, estimation of nonbreaking

wave forces on vertical walls is largely theory with

some empirical adjustments, whereas estimation of

irregular wave runup on permeable structures is

almost entirely empirical.

Waves are usually included in empirical design

relationships by one or more wave parameters

considered to be representative of the incident wave

condition. Common regular and irregular wave

parameters are listed Table 1. Sometimes, these wave

parameters are combined to form dimensionless

variables that may include relevant fluid parameters
Table 1

Common wave and fluid parameters

Regular wave parameters

H—wave height Ho—deepwater wave height

L—local wave length Lo—deepwater wave length

T—wave period k—wavenumber [=2p/L]

Irregular wave parameters

Hmo—zeroth-moment

wave height

Hs—significant wave height

[=H1/3]

Hrms—root-mean-squared

wave height

H10%—10% of waves are

higher

Tp—spectral peak wave

period

Tm—mean wave period

Lp—wave length associated

with Tp

Lop—deepwater wave length

with Tp

Lm—wave length associated

with Tm

Lom—deepwater wave length

with Tm

Fluid and other parameters

g—gravitational acceleration q—fluid density

l—coefficient of dynamic

viscosity

m—coefficient of kinematic

viscosity

h—water depth a—beach or structure slope
and other parameters such as those given in Table 1.

This helps reduce the number of independent varia-

bles that need to be examined during laboratory

testing. Table 2 lists the more common dimensionless

wave parameters that are used in coastal structure

design guidance.

With the exception of relative wave height, H/h,

the wave parameters listed in Table 2 strictly

pertain to uniform, periodic waves of permanent

form. It is customary to use first-order wave theory

to calculate values for wave length. These dimen-

sionless parameters are also used to characterize

irregular waves trains by substituting wave heights,

wave periods, and wave lengths representative of

irregular waves, such as wave heights Hmo, Hrms,

H1/3, and H10%; wave periods Tp and Tm; and wave

lengths Lp, Lop, Lm and Lom. (See list of symbols at

end of paper for definitions of these irregular wave

parameters.)

Correlations between dimensionless wave param-

eters and process responses observed in experiments

form the basis for much coastal structure design

guidance and some nearshore beach processes. Often,

justification for using a particular wave parameter is

not based on a physical argument, but simply because

it produced the least scatter in the correlation. Only

relative wave height, H/h, is applicable to solitary

waves, although there are some definitions for solitary

wave length which would allow use of the other wave

parameters.
2. The Iribarren number

One parameter of proven usefulness for wave

processes on beaches and at coastal structures is the
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Iribarren number (n and no) also known as the surf

similarity parameter. This parameter was introduced

by Iribarren and Nogales (1949) as an indicator for

whether breaking would occur on a plane slope. As

discussed by Battjes (1974), the derivation of Iribarren

and Nogales suggests the parameter no gives the ratio

of the beach or structure slope bsteepnessQ to the

square root of wave steepness as defined by the local

wave height (H) at the toe of the slope divided by the

deepwater wave length (Lo). Note that often the

parameter no is calculated using a finite-depth local

wave height near the slope toe rather than a true

deepwater Ho. For example, in laboratory experi-

ments, it is common to specify H as the wave height

measured over the flat-bottom portion of the wave

facility before significant wave transformation occurs

due to shoaling. In some cases, HcHo, but this is not

always assured. For the discussion in this paper, we

will assume that no is based on the local wave height

at or near the toe of the slope rather than Ho.

Hunt (1959) studied runup of regular waves on

plane and composite slopes. His analysis for the case

where waves break on the slope resulted in a

dimensionally nonhomogeneous equation for maxi-

mum runup R given as

R

H
¼ 2:3

tanaffiffiffiffiffiffi
H

T2

r ð1Þ

Recognizing that the coefficient 2.3 has units of ft1/2/s,

Eq. (1) can be expressed as a dimensionally homoge-

neous equation in terms of deepwater Iribarren

number with the introduction of the gravity constant

in Imperial units, i.e.,

R

H
¼ 1:0no ð2Þ

This form of Hunt’s equation (with different dimen-

sionless coefficient) is presently used to estimate

irregular wave runup on plane impermeable slopes

(De Waal and Van der Meer, 1992; Burcharth and

Hughes, 2002).

The surf similarity parameter was popularized by

Battjes (1974) who christened it as the Iribarren

number and showed its applicability to a number of

surf zone processes including: a criterion for wave

breaking, differentiation of breaker types, wave setup,
wave runup and rundown, wave reflection, and

number of waves in the surf zone. Since that time,

the Iribarren number has appeared in many empirical

formulas related to beach processes and coastal

structures.

The deepwater Iribarren number is directly

proportional to the wave period and to the beach

or structure slope, and no is inversely proportional to

the square root of local wave height. Water depth is

not included in the deepwater Iribarren number, but

it is implicitly included in the local Iribarren number

based on local wave length. Most successful

applications of the deepwater Iribarren number

pertain to surf zone processes where the waves

undergo depth-limited breaking on the slope. Con-

sider two waves having significantly different wave

heights but the same value of wave steepness, H/Lo.

Depth-limited breaking will occur at different depths

on the slope, and the magnitude of the dimensional

flow parameters at breaking will be different; but this

does not seem to matter for some surf zone processes

that are well correlated to no. As a simple

approximation, waves in the surf zone decay in a

self-similar manner with breaker height proportional

to water depth, so it can be argued that the wave

bores resulting from these two different waves

behave much the same after breaking provided they

have the same deepwater wave steepness prior to

breaking. Likewise, we should expect somewhat

similar flow characteristics in the broken waves as

suggested by Battjes (1974).

However, prior to depth-limited wave breaking,

deepwater wave steepness based on local wave

height (and by extension the deepwater Iribarren

number) is not necessarily a good descriptor of flow

kinematics because local water depth is not included.

This is illustrated by noting that deepwater wave

steepness can be represented as the product of

relative wave height (H/h) and relative water depth

(h/gT2), so that

no
tana

¼
�

H

Lo

��1=2

¼
�
2p

�
H

h

��
h

gT 2

���1=2

ð3Þ

Fig. 1 plots the variation of (H/Lo)
�1/2 for different

values of relative depth. The solid lines are constant

values of relative wave height (H/h) between 0.1 and

0.7. The heavy-dashed curve is the wave steepness



Fig. 1. Variation of (H/Lo)
�1/2 with h/gT2 for constant values of H/h.
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limit as defined by Williams (1985) and expressed

by Sobey (1998) as a rational function. The

horizontal chain-dashed lines represent the demarca-

tion (no=3.3) between surging/collapsing breakers

(above the line) and plunging/ spilling breakers

(below the line) for different slopes. Similar trends

arise if H/Lo is replaced with local wave steepness

H/L.

Different combinations of H/h and h/gT2 yield the

same value of deepwater wave steepness. In partic-

ular, a wave in shallow water having the same height

and period as a wave in deeper water will have the

same deepwater wave steepness, but different wave

kinematics. The wave in deeper water will behave

more like a linear wave whereas the wave in shallow

water will exhibit more nonlinearity. Furthermore, a

change in wave height occurs as the deeper water

wave moves into shallow water, so it is possible that

by the time the deeper water waves reaches the depth

of the shallow water wave, the wave height will be

different. Thus, deepwater Iribarren number based on

local wave height may not be the best parameter for

correlations involving waves prior to breaking, or for

waves described as surging or collapsing breakers,

because the influence of water depth is not included.

However, ample evidence supports the use of deep-

water wave steepness H/Lo (and no) for correlations to
surf zone processes due to plunging and spilling wave

breaking.
3. Criteria for a new wave parameter

Partial motivation for developing a new wave

parameter for nearshore coastal processes and coastal

structure design comes from the Hudson armor

stability equation and other stability equations based

on the armor stability parameter, H/DDn50. Examina-

tion of Hudson’s (1959) development of the stability

equation reveals that wave height enters the armor

stability parameter as a near-breaking long-wave

approximation of horizontal water velocity in the

vicinity of the still water level, i.e., Vw~
ffiffiffiffiffiffiffi
gH

p
. From

a physical perspective, this seems to be a gross

simplification of wave effects on armor stability.

However, because of other complexities related to

armor stability (randomness of armor matrix, armor

support points, interlocking, etc.), the lack of a more

rigorous description for wave loading may not have

been too detrimental. Most established stability

coefficients for use with the Hudson equation were

based on the more conservative observations rather

than the mean of the data. Nevertheless, there remains

the possibility that the observed scatter in armor
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stability tests could be reduced with a more physically

relevant parameter that better represents the wave

forcing.

This paper describes development of a new wave

parameter to represent the influence of nearshore

waves in correlations between wave forcing and

corresponding coastal processes. It is anticipated that

this new wave descriptor will prove useful to depict

processes that occur when waves impinge on coastal

structures. The new wave parameter ideally will

satisfy the following criteria:

(1) The parameter must be physically relevant so it

can be incorporated into simple descriptive

models of specific physical processes.

(2) The parameter should apply to both periodic

waves and transient waves such as ship wakes

and solitary waves with the hope that results

from one wave type might be applicable for the

other type.

(3) The parameter should span the range of relative

depths from deep water to shallow water.

(4) The parameter should provide a better

representation of nonbreaking and nonlinear

wave processes than existing simple wave

parameters.

(5) The parameter should provide comparable

results to established parameters such as the

Iribarren number when used to predict processes

stemming from plunging and spilling wave

breaking.

(6) The parameter should be easy to estimate so

design guidance using the parameter can be

programmed into computer spreadsheets or

simple programs.

The following sections introduce a new parameter

based on maximum wave momentum flux, and the

parameter is developed for linear waves, nonlinear

(Fourier approximation) waves, and solitary waves.

The parameter is also estimated for a ship-generated

wave, and use with irregular wave trains is discussed.

No practical applications are given in this paper; but a

companion paper (Hughes, 2004) demonstrates the

utility of the proposed wave parameter by develop-

ment of new empirical equations for runup of regular,

irregular, and solitary waves on smooth, impermeable

plane slopes. In addition, Melby and Hughes (2003)
applied the new wave parameter to formulate equa-

tions for rock armor stability of rubble-mound coastal

structures.
4. Maximum wave momentum flux—periodic

waves

All wave theories are based on varying simplifica-

tions of the continuity and momentum equations, so it

seems reasonable that a parameter representing the

rate of change of wave momentum would be a good

candidate for use in coastal structure design and for

estimation of nearshore processes. Longuet-Higgins

and Stewart (1964) noted the relevance of wave

momentum flux. . .

bSurface waves possess momentum which is directed

parallel to the direction of propagation and is propor-

tional to the square of the wave amplitude. Now if a

wave train is reflected from an obstacle, its momen-

tum must be reversed. Conservation of momentum

then requires that there be a force exerted on the

obstacle, equal to the rate of change of wave

momentum. This force is a manifestation of the

radiation stress.Q

Thus, wave momentum flux is the property of

progressive waves most closely related to force

loads on coastal structures or any other solid object

placed in the wave field. For this reason, wave

momentum flux is a compelling wave property for

characterizing waves in the nearshore region, and

potentially, for relating waves to the response of

coastal structures due to wave loading or to other

coastal processes.

The relevance of wave momentum flux to wave

runup on a beach was noted by Archetti and

Brocchini (2002). They showed a strong correlation

between the time series of wave runup and the time

series of depth-integrated mass flux within the

swash zone. They also noted that the local depth-

integrated momentum flux was balanced mainly by

the weight of water in the swash zone which was

approximated as a triangular wedge. Their observa-

tion suggests that maximum wave runup on an

impermeable slope might be directly proportional to

the maximum depth-integrated wave momentum

flux.
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The instantaneous flux of horizontal momentum

(mf) across a unit area of a vertical plane oriented

parallel to the wave crests is given by

mf x; z; tð Þ ¼ pd þ qu2 ð4Þ

where pd—instantaneous wave dynamic pressure at a

specified position; u—instantaneous horizontal water

velocity at the same specified position; q—water

density.

Longuet-Higgins and Stewart (1964) defined the

component of bradiation stressQ perpendicular to the

wave crest as the wave momentum flux integrated

over the water depth and averaged over the wave,

i.e.,

Sxx ¼
1

L

Z L

0

Z g xð Þ

�h

ðpd þ qu2Þdzdx ð5Þ

They substituted linear (Airy) theory expressions for

pressure and horizontal velocity and completed the

integration by applying first-order wave kinematics

above the still water level, which is not strictly first-

order theory. This bextended linear theoryQ resulted

in the expression

Sxx ¼
1

2
qga2

�
1

2
þ 2kh

sinh2kh

�
ð6Þ

where L—local wave length; h—water depth from

bottom to the still water level; g—instantaneous sea

surface elevation relative to still water level; z—

vertical coordinate directed positive upward with

origin at the SWL; x—horizontal coordinate positive

in the direction of wave propagation; g—gravita-

tional acceleration; a—wave amplitude; k—wave

number [=2p/L]. Note that Sxx has units of force

per unit length of wave crest.

There is significant variation of depth-integrated

wave momentum flux over a wave length from large

positive values at the crest to large negative values

in the trough. So instead of adopting a wave-

averaged value (i.e., Sxx) which is quite small

compared to the range of variation, it is logical

when considering some coastal processes, such as

the wave force loading on structures, to focus on the

maximum, depth-integrated wave momentum flux
that occurs during passage of a wave, i.e., the

maximum of

MF x; tð Þ ¼
Z g xð Þ

�h

ðpd þ qu2Þdz ð7Þ

that occurs at the wave crest when g(x)=a. Note that

on the surface of a perfectly reflecting, impermeable

vertical wall, the horizontal velocity u is zero, and

Eq. (7) becomes simply the integral over the water

depth of the dynamic pressure exerted by the wave

on the wall, or the total instantaneous wave force

on the wall (excluding the hydrostatic pressure

component).

Maximum depth-integrated wave momentum flux,

as defined by Eq. (7) with g(z)=a, can be determined

for any surface wave form provided the velocity and

pressure field under the crest can be specified. In

theory, this means that a wave parameter based on

momentum flux has the potential of applying to both

periodic and transient wave types, which may be a

useful property. More importantly, the physical

relevance of wave momentum flux to force loading

on structures seems logical, thus fulfilling an impor-

tant criterion for the proposed wave parameter.

4.1. Linear (Airy) wave theory

In linear wave theory, dynamic pressure and

horizontal wave velocity are in phase with the sea

surface elevation, and the maximum wave momentum

flux occurs at the wave crest. The first-order

approximation of depth-integrated wave momentum

flux is found by substituting the dynamic pressure and

horizontal wave velocity at the wave crest from Airy

wave theory into Eq. (7) and integrating from the

bottom only up to the still water level because

kinematics are not specified above still water level

in first-order theory. From linear wave theory with no

unidirectional current,

pd zð Þcrest ¼ qga
coshk hþ zð Þ

coshkh
ð8Þ

and

u zð Þcrest ¼ ax
coshk hþ zð Þ

sinhkh
ð9Þ
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where x is circular wave frequency (=2p/T), and T is

wave period. Strictly, the dynamic pressure term

should also include a vertical velocity component

(�qw2), so the dynamic pressure is at the same level

of approximation as the horizontal velocity term.

However, at the wave crest, w=0 throughout the water

column and contributes nothing to the dynamic

pressure; therefore, the term is not included here.

Substituting Eqs. (8) and (9) into Eq. (7) and

integrating from the bottom to the still water level

yields the analytically continuous expression

ðMFÞmax ¼
qga
k

sinhkh

coshkh
þ qa2x2

4k

sinh2khþ 2kh

sinh2kh

ð10Þ

The second term in Eq. (10) is simplified by

substituting the linear dispersion relationship x2=

gk tanh kh and making use of the identity sinh

kh�cosh kh=1/2 sinh 2kh. Thus, the first-order

theory approximation for maximum depth-integrated

wave momentum flux is given by

ðMFÞmax ¼
qga
k

tanhkhþ qga2

2

�
1þ 2kh

sinh2kh

�
ð11Þ

which, like Sxx, has units of force per unit length of

wave crest.
Fig. 2. Wave momentum flux parameter
A convenient expression for nondimensional max-

imum depth-integrated wave momentum flux arises

by dividing Eq. (11) by (qgh2) and recognizing wave

height H is twice the wave amplitude, a, i.e.,

MF

qgh2

�
max

¼ 1

2

�
H

h

�
tanhkh

kh
þ 1

8

�
H

h

�2

�
�
1þ 2kh

sinh2kh

�
ð12Þ

For convenience, the nondimensional depth-integrated

maximum wave momentum flux, given as

�
MF

qgh2

�
max

will be referred to as simply the bwave momentum

flux parameter.Q
Eq. (12) expresses the wave momentum flux pa-

rameter as a function of relative wave height (H/h)

and relative depth (kh). Fig. 2 presents the nondimen-

sional parameter for a family of curves representing

constant values of H/h. The abscissa on the plot is the

commonly used relative depth, h/gT2. For a constant

water depth, wave period increases toward the left and

decreases to the right. The range of relative depths

covers most coastal applications. The dashed line

gives the steepness-limited wave-breaking criterion
versus h/gT2 (linear wave theory).
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tabulated by Williams (1985) and expressed by Sobey

(1998) as the rational approximation

x2Hlimit

g
¼ cotanh

�
a1r þ a2r

2 þ a3r
3

1þ b1r þ b2r2

�
ð13Þ

where r=x2h/g, a1=0.7879, a2=2.0064, a3=�0.0962,

b1=3.2924, b2=�0.2645, and co=1.0575. Sobey noted

the above expression has a maximum error of 0.0014

over range of Williams’ table. Williams’ (1985)

tabulation of limit waves is more accurate than the

traditional limit steepness given by

Hlimit

L
¼ 0:142 tanh khð Þ ð14Þ

Eq. (14) overestimates limiting steepness for long

waves and underestimates limiting steepness for short

waves.

The relative contribution of the velocity term (qu2)
to the total depth-integrated wave momentum flux

varies between about 5% for low-amplitude long-

period waves to nearly 30% for waves approaching

limiting steepness. Linear theory estimates of max-

imum depth-integrated wave momentum flux are

lower than actual because the momentum flux above

the still water level is neglected.

As the wave period increases, and the wave length

becomes very long (shallow water waves), the wave

number approaches zero, and Eq. (12) approaches a

limiting value for the wave momentum flux parameter

given by

�
MF

qgh2

�
max

¼1

2

�
H

h

�
þ 1

4

�
H

h

�2

ðfor very short wavesÞ ð15Þ

This limit is evident on the ordinate axis of Fig. 2.

Similarly, Eq. (12) approaches an asymptotic form for

very short period waves given by

�
MF

qgh2

�
max

¼ 1

8p2

�
H

h

��
h

gT2

��1

þ 1

8

�
H

h

�2

ðfor very short wavesÞ ð16Þ

However, this deepwater limit is of little interest when

considering nearshore coastal processes or coastal

structures.
4.2. Extended linear wave theory

By assuming expressions for linear theory wave

kinematics are valid above the still water level, it is

possible to derive a somewhat more accurate estimate

of maximum depth-integrated wave momentum flux

at the wave crest. This technique has been referred to

as extended linear theory or one-and-a-half-order

wave theory.

Substituting Eqs. (8) and (9) for pd and u,

respectively, in Eq. (7), integrating from z=�h to

z=a (wave crest), applying the dispersion relation

x2=gk tanh kh, and making use of the identity sinh kh

cosh kh=1/2 sinh 2kh as before yields

ðMFÞmax ¼
qga
k

sinh k hþ að Þ½ 	
cosh khð Þ þ qga2

2

�
�
sinh 2k hþ að Þ½ 	 þ 2k hþ að Þ

sinh2kh

�
ð17Þ

Dividing Eq. (17) by (qgh2) and substituting a=H/2

gives the nondimensional form of the maximum

depth-integrated wave momentum flux parameter for

extended linear theory, i.e.,

�
MF

qgh2

�
max

¼ 1

2

�
H

h

�
sinh k hþ H=2ð Þ½ 	

kh cosh khð Þ þ 1

8

�
H

h

�2

�
�
sinh 2k hþH=2ð Þ½ 	þ2k hþ H=2ð Þ

sinh2kh

�

ð18Þ

The asymptotic long-wave limit of Eq. (18) as

kY0 is given by

�
MF

qgh2

�
max

¼
�
1

2

�
H

h

�
þ 1

4

�
H

h

�2�

�
�
1þ 1

2

�
H

h

��

ðfor very long wavesÞ ð19Þ

which is seen to be an extension of the linear theory

long-wave limit.

Fig. 3 plots the extended linear theory solution for

the wave momentum flux parameter as a function of

relative depth h/gT2. The limiting wave steepness, as



Fig. 3. Wave momentum flux parameter versus h/gT2 (extended linear wave theory).
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given by Williams (1985), is shown by the dashed

line. Percentage contributions from the pressure and

horizontal velocity terms were similar to those noted

for linear theory. As expected, estimates of maximum

depth-integrated wave momentum flux are greater

than corresponding estimates from linear theory with

the largest increase of almost 30% occurring for long

waves near the steepness limit. Extended linear theory

gives better estimates of (MF)max than linear theory,

but it still does not account for wave asymmetry about

the horizontal axis characterized by peaked crests and

long, shallow troughs typical of nonlinear waves.

4.3. Nonlinear (Fourier) wave theory

Although linear and extended linear wave theories

provide simple analytical estimates of maximum

depth-integrated wave momentum flux, experience

tells us that the momentum flux contained in the wave

crest is crucial if we wish to relate this parameter to

the response of coastal structures in a realistic way.

The linear theory estimate of maximum wave

momentum flux omits that portion of momentum flux

above the still water line, and the extended linear

theory neglects the effects of nonsinusoidal wave

forms typical of nonlinear, shallow water waves.

These omissions will become more problematic as
the wave approaches its limiting relative wave height

(H/h).

Fourier approximation wave theory (Rienecker

and Fenton, 1981; Fenton, 1988; Sobey, 1989)

provides good characterization of steady, finite-

amplitude waves of permanent form over the entire

range of water depths from deepwater to nearshore

and for wave heights approaching the limiting steep-

ness. This hybrid analytical/computational method-

ology represents the wave stream function by a

truncated Fourier series that exactly satisfies the field

equation (Laplace), the kinematic bottom boundary

condition, and the lateral periodicity boundary con-

ditions. Nonlinear optimization is used to complete

the solution by determining values for the remaining

unknowns that best satisfy the nonlinear kinematic

and dynamic free surface boundary conditions

(Sobey, 1989). Generally, more terms are needed in

the truncated Fourier series to represent waves with

pronounced asymmetry about the still water line, i.e.,

steep waves and shallow water waves. Once the

coefficients of the Fourier series are established for a

particular wave, the kinematics for the entire wave

can be easily calculated.

Because Fourier approximation wave theory pro-

vides complete kinematics for finite amplitude waves

spanning the range covered by Stokes and Cnoidal



S.A. Hughes / Coastal Engineering 51 (2004) 1067–10841076
wave theories, it is possible to estimate reasonable

values for maximum depth-integrated wave momen-

tum flux associated with these waves. Unfortunately,

such estimates of (MF)max must be calculated numeri-

cally which could significantly lessen the utility of the

wave momentum flux parameter for design purposes.

A simple empirical approximation for the wave

momentum flux parameter of finite amplitude waves

was developed using a Fourier wave computer

program. This program was repeatedly run for

selected combinations of wave steepness (H/h) and

relative depth (h/gT2), and the resulting estimates of

wave kinematics were used to calculate maximum

depth-integrated wave momentum flux according to

Eq. (7). Results are presented as the set of curves

shown on Fig. 4. Coding accuracy was checked by

assuring that estimates of (MF)max for small ampli-

tude, deepwater waves were the same as estimates

given by the first-order analytical solution. In addi-

tion, it was noted that estimates for very long waves

(small values of h/gT2) approached the values

obtained from the analytical solitary wave solution

given in the following section. The dashed line on the

plot represents the limiting wave steepness given by

Williams (1985).

The difference between linear, extended linear, and

finite-amplitude theory estimates of the wave momen-

tum flux parameter is illustrated on Fig. 5 which
Fig. 4. Wave momentum flux parameter v
shows curves representing H/h=0.3 and 0.7. For the

lower relative wave height of H/h=0.3, there is good

correspondence between extended linear and Fourier

approximation for values of h/gT2 greater than about

0.03. As the relative depth decreases from 0.03, there

is increasing divergence which illustrates the impor-

tance of nonlinear wave shape. Linear theory under

predicts extended linear theory by nearly a constant

amount.

For relatively high waves (H/h=0.7), linear and

extended linear estimates clearly underpredict the

correct value of the wave momentum flux parameter.

For example, at a value of h/gT2=0.01, the Fourier

approximation estimate of dimensionless (MF)max is

2.0 times greater then the linear estimate and 1.4 times

greater than the extended linear estimate. This differ-

ence increases as relative depth decreases, emphasiz-

ing the importance of nonlinearities in nearshore

waves.

Application of the wave momentum flux parameter

to coastal structure design and estimation of coastal

processes will typically involve empirical correlation

of the parameter with observed responses. It could be

argued that the empirical nature of this type of

application does not depend on absolute values but

rather on relative values of the incorporated wave

parameter; and in general, the linear and extended

linear curves show similar trends as the finite-
ersus h/gT2 (Fourier wave theory).



Fig. 5. Comparison of linear, extended linear, and finite-amplitude wave momentum flux parameters.
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amplitude curves. Thus, the simpler, analytical linear

theories could be used without significant loss of

validity, provided the same linear theory was used for

all cases. However, one of the stated criteria for this

new parameter is that it must be useful for regular

waves, irregular waves, and nonperiodic waves. By

using the best estimate of (MF)max for each category

of wave, it may be possible in the future to relate

design guidance established for one type of wave to

similar circumstances involving other wave types. For

example, if rubble-mound armor stability can be

related to (MF)max for regular waves, then it may be

possible to extend the stability prediction to structures

exposed to transient ship-generated waves or solitary

waves simply by estimating the maximum depth-

integrated wave momentum flux for the other type of

wave. For this reason, it is suggested that estimates of

(MF)max for regular periodic waves be made using the

Fourier approximation method.

An empirical equation for estimating the wave

momentum flux parameter for finite amplitude steady

waves was established using the calculated curves of

constant H/h shown in Fig. 4. A nonlinear best-fit of a

two-parameter power curve was performed for each

calculated H/h curve. Next, the resulting power curve

coefficients and exponents were plotted as a function

of H/h, and fortunately, both the coefficients and

exponents could be reasonably represented by power
curves. The resulting, purely empirical equation

representing the curves shown on Fig. 4 is given as

�
MF

qgh2

�
max

¼ A0

�
h

gT2

��A1

ð20Þ

where

A0 ¼ 0:6392

�
H

h

�2:0256

ð21Þ

A1 ¼ 0:1804

�
H

h

��0:391

ð22Þ

Although the empirical coefficients and exponents in

Eqs. (21) and (22) are expressed to four decimal places,

corresponding accuracy is not implied. Rounding to

two decimal places should be reasonably adequate for

practical application of these empirical equations.

Goodness-of-fit of Eq. (20) compared to the

computed values given on Fig. 4 is shown on Fig.

6. For smaller values of nondimensional (MF)max,

there is reasonable correspondence except for the

left-most points of each curve (shown below the line

of equivalence). This divergence was caused by

the power curve tending toward positive infinity as

h/gT2Y0. However, greater deviation begins to occur

for dimensionless (MF)maxN0.6. Nevertheless, the

only poorly fitted curve is for H/h=0.8 which is at



Fig. 6. Goodness-of-fit of nonlinear momentum flux empirical

equation (Fourier wave theory).
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or slightly above the limiting relative wave height

for waves on a horizontal seabed. This problem

was likely the result of forcing the numerical

computation beyond appropriate limits. The maxi-

mum underprediction and overprediction of the

empirical curve-fit were 0.105 and 0.089, respec-

tively. The overall root-mean-squared error of the

curve-fit was 0.023.

The empirical equation represented by Eq. (20),

along with Eqs. (21) and (22), provides an easy

method for estimating the wave momentum flux

parameter for finite-amplitude, steady regular waves.

This empirical formulation is recommended over

those provided by linear and extended linear theory

because it better represents the momentum flux in the

wave crest which is expected to be critical for most

applications to coastal structures.

4.4. Application to irregular waves

Most coastal structure design guidance developed

in the past 20–25 years use wave parameters

representative of unidirectional irregular wave trains

or, in rarer cases, directionally spread irregular

waves. Attempts have been made to relate the

irregular wave parameters to regular wave counter-
parts, but no uniform, clear consensus has been

found.

The wave momentum flux parameter represent-

ing an irregular wave train is probably best

specified by direct substitution of irregular wave

parameters into the empirical Eqs. (20), (21), and

(22) developed using Fourier approximation theory.

Application is simple, and estimates of maximum

wave momentum flux should be reasonably repre-

sentative of the irregular wave train. One drawback

to this method is inconsistency between investigators

regarding which irregular wave parameters to sub-

stitute. One application may use time–domain

statistics H1/3 and Tm, while another might use

frequency–domain parameters Hmo and Tp. Thus, it

is important to specify clearly which irregular wave

representative wave height and period are substi-

tuted. For now, the direct correspondence by

substitution of irregular wave parameters Hmo and

Tp is recommended for estimating a value of the

wave momentum flux parameter representative of

irregular waves.
5. Maximum wave momentum flux—transient

waves

Because the maximum, depth-integrated wave

momentum flux can be determined for any wave

form in which the kinematics are known, it is

possible to estimate the wave momentum flux

parameter for nonperiodic waves. This may prove

useful for comparing coastal process responses for

different wave types.

5.1. Solitary wave theory

The maximum depth-integrated wave momentum

flux of a solitary wave occurs at the crest where

both the horizontal velocity and dynamic pressure

are greatest. To first-order of approximation, the

horizontal velocity at the crest as a function of

elevation zs above the bottom can be approximated

as (e.g., Wiegel, 1964)

umaxðzsÞ ¼
CN

½1þ cosðMzs
h
Þ	

ð23Þ
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and the total pressure, which is given at first order

as hydrostatic, is expressed as a function of zs at

the crest as

PTðzsÞ ¼ qgðgs � zsÞ ¼ qg½ H þ hð Þ � zs	 ð24Þ

where C—solitary wave celerity ½ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g H þ hð Þ

p
	;

gs—sea surface elevation measured from the sea

floor; zs—vertical coordinate-directed positive

upward with origin at the sea floor; h—water

depth from the bottom to still water level; M, N—

coefficients that are functions of H/h.

Because the reference coordinate system has its

origin on the sea floor, the depth-integrated momen-

tum flux definition equation changes slightly to

MF xð Þ ¼
Z g xð Þ

0

ðpd þ qu2Þdzs ð25Þ

and the maximum depth-integrated wave momentum

flux for a solitary wave is found as

ðMFÞmax ¼
Z Hþhð Þ

0

qg½ H þ hð Þ � zs	dzs �
Z h

0

qgzsdzs

þ
Z Hþhð Þ

0

q
C2N2�

1þ cos

�
Mzs

h

��2 dzs ð26Þ

The first integral in Eq. (26) is the total pressure, and

the second integral is the hydrostatic pressure between

the bottom and the still water level. Subtracting the

second integral from the first results in depth-

integrated wave dynamic pressure. Performing the

integration and substituting for wave celerity, C,

results in the expression

ðMFÞmax ¼
qg
2

ðH2 þ 2HhÞ

þ qg
2

H þ hð ÞN 2h

M

	
tan

�
M

2

�
H

h
þ 1

��

þ 1

3
tan3

�
M

2

�
H

h
þ 1

��

ð27Þ
Dividing both sides by qgh2 yields the nondimen-

sional expression for the wave momentum flux

parameter

�
MF

qgh2

�
max

¼ 1

2

��
H

h

�2

þ 2

�
H

h

��

þ N 2

2M

�
H

h
þ1

�	
tan

�
M

2

�
H

h
þ1

��

þ 1

3
tan3

�
M

2

�
H

h
þ 1

��

ð28Þ

The first bracketed term in Eq. (28) arises from the

dynamic pressure, and interestingly, this term is

exactly twice the value of the long wave approxima-

tion of the wave momentum flux parameter derived

from linear wave theory and shown in Eq. (15). The

second term represents the contribution of horizontal

velocity to the wave momentum flux parameter.

The coefficients M and N are typically presented in

graphical form (e.g., Wiegel, 1964; Shore Protection

Manual, 1984). To accommodate calculations, a

nonlinear curve fit was applied to the plotted curves

to produce the following simple equations that give

reasonable values for M and N

M ¼ 0:98

	
tanh

�
2:24

�
H

h

��
0:44

ð29Þ

N ¼ 0:69 tanh

�
2:38

�
H

h

��
ð30Þ

The empirically fit equations (solid lines) are plotted

along with the data points taken from the Shore

Protection Manual (1984) on Fig. 7. Maximum

underprediction and overprediction errors for Eq.

(29) are 0.018 and 0.023, respectively. Overall, root-

mean-squared error is 0.010. Eq. (30) has maximum

under- and over-prediction errors of 0.010 and 0.006,

respectively, with overall root-mean-squared error of

0.0056.

The variation of the wave momentum flux param-

eter for solitary waves as a function of H/h is shown

in Fig. 8. These values represent the upper limit of the

nonlinear (Fourier) wave case when h /(gT2)

approaches zero (see Fig. 4). At a value of H/h=0.1,

the velocity term contributes only about 7% of the

calculated momentum flux, whereas as at H/h=0.8,

the percentage increases to around 38% of the total. It
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should be possible to perform a similar derivation for

higher order solitary wave theory, but estimates of

maximum depth-integrated wave momentum flux

from higher-order theory are not expected to be

markedly different from results obtained from first-

order solitary theory.

5.2. Nonlinear ship-generated waves

Applying common periodic wave parameters to

transient waves such as ship-generated waves

requires that individual waves in the wave train be

identified and treated as uniform waves of perma-

nent form. For example, Fig. 9 shows a transient

ship-generated wave from a laboratory experiment.

One of the highest waves has been defined as the

crest and trough between two successive zero

upcrossings of the still water level. The period for

this wave is the time between the two upcrossings,

and the wave height is the vertical distance between

crest and following trough. However, does this

nonlinear ship wave have the same effect on a

coastal structure or on a shoreline as the nonlinear

regular wave defined by the values of H and T?

Intuitively, we might expect similar effects if the

transient and uniform waves had similar values of

the wave momentum flux parameter.
Fig. 7. Nonlinear curve fit to solita
A time series of depth-integrated wave momen-

tum flux corresponding to the section of transient

wave shown in the box in Fig. 9 was calculated

using the local Fourier approximation method

described by Sobey (1992). This method is similar

to the Fourier steady wave approximation method

discussed earlier in this paper. The measured trace of

sea surface elevations is subdivided into small

sections, and for each subsection a stream function

represented by a truncated Fourier series is defined.

An optimal solution is found within each window

that best satisfies the nonlinear free-surface kine-

matic and dynamic boundary conditions. Once kine-

matics are known throughout the water column, the

wave momentum flux can be estimated at each point.

Smith and Swan (2002) compared exact numerical

solutions of specified test cases to existing, less

computationally intensive techniques for estimating

kinematics of extreme waves. A favorable comparison

was noted for Sobey’s (1992) local Fourier approx-

imation in the crest region near the sea surface, with

less-favorable correspondence farther down in the

water column. Because the maximum wave momen-

tum flux is concentrated in the wave crest, the local

Fourier approximation method is appropriate for

estimating depth-integrated wave momentum flux

for transient wave trains.
ry wave N and M functions.



Fig. 8. Solitary wave momentum flux parameter versus H/h.
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The upper plot of Fig. 10 shows the sea surface

trace from the section of transient wave shown in

the box in Fig. 9, and the lower plot is depth-

integrated wave momentum flux calculated using

the local Fourier approximation of Sobey. The time-

dependent MF is reasonably smooth near the crest,

but the method is known to have difficulties in the
Fig. 9. Ship-generated transient wave time
trough and around the still water level where the

sea surface curvature is small (see Sobey, 1992). No

filtering was used during the computation. Despite

problems resolving MF away from the wave crest,

the values for maximum depth-integrated wave

momentum flux at the crest are considered to be

valid.
series from laboratory experiment.



Fig. 10. Ship-generated wave sea surface (upper) and MF (lower) time series.
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An alternative estimate of maximum depth-inte-

grated wave momentum flux for the individual wave

defined by zero-upcrossings in Fig. 10 was calculated

using Eqs. (20), (21), and (22) which are intended for

regular steady waves. The wave parameters were

originally given in English units as H=0.78 ft, T=1.38

s, and h=9 ft. A somewhat favorable comparison to

the local Fourier approximation was found. . .

ðMFÞmax ¼
	
55:1 lb=f t local approx:

48:7 lb=f t Eq: 20ð Þ
or�

MF

qgh2

�
max

¼
	
0:0106 local approx:

0:0094 Eq: 20ð Þ ð31Þ

Although this is only one comparison, it may

indicate that treating transient wave trains as a

succession of uniform waves might be reasonable

for those processes thought to be related to wave

momentum flux.
6. Summary and conclusions

A new parameter representing the maximum depth-

integrated wave momentum flux occurring in a wave

is proposed for characterizing the wave contribution
to nearshore coastal processes on beaches and at

coastal structures. The wave momentum flux param-

eter has units of force per unit crest width, and it better

characterizes the flow kinematics at a given depth

than other wave parameters that do not distinguish

increased wave nonlinearity. The wave momentum

flux parameter can be defined for regular, irregular,

and nonperiodic (transient) waves such as ship-

generated wakes and solitary waves. Thus, if a

nearshore process can be successfully related to the

wave momentum flux parameter, it may be possible to

describe the same process being forced by different

wave types with a similar formulation. This hypoth-

esis is presently unproven.

The wave momentum flux parameter was derived

for linear and extended linear wave theory; however,

the results do not accurately estimate the maximum

wave momentum flux in steep, nonsinusoidal waves

which are likely to be more influential for coastal

process response. Fourier approximation wave theory

for regular steady waves over a horizontal bottom was

used to develop an easily applied empirical expression

giving nondimensional maximum depth-integrated

wave momentum flux as a function of relative wave

height and relative water depth. For irregular wave

trains, it is recommended that H and T in the empirical

formation be replaced with frequency–domain irreg-

ular wave parameters Hmo and Tp. The wave
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momentum flux parameter was also derived for first-

order solitary wave theory, and a time-series of depth-

integrated wave momentum flux was estimated for a

transient ship-generated wave.

It is anticipated that the wave momentum flux

parameter may prove useful for developing improved

semiempirical formulas to describe nearshore pro-

cesses and wave/structure interactions such as wave

runup, overtopping, reflection, transmission, and armor

stability. Surf zone processes where waves break as

plunging or spilling breakers may not benefit from use

of the wave momentum flux parameter because the

breaking processes effectively negates the advantage of

characterizing the wave nonlinearity. In these situa-

tions, use of the new parameter may not improve upon

existing correlations to wave parameters such as the

Iribarren number. However, for nonbreaking condi-

tions or where wave breaking occurs as surging or

collapsing breakers on steep slopes, the wave momen-

tum flux parameter should, in theory, provide a better

characterization of the wave forcing and lead to better

process response correlations. This remains to be seen.

The optimism expressed in this paper regarding the

utility of the new parameter is justified initially by

reasonable correspondence of between the wave

momentum flux parameter and wave runup on smooth,

impermeable slopes (Hughes, 2004) and by new

expressions for rubble-mound armor layer stability as

functions of the wave momentum flux parameter

(Melby and Hughes, 2003).

Notation

a wave amplitude

a1, a2, a3 empirical coefficients

A0 empirical coefficient

A1 empirical exponent

b1, b2 empirical coefficients

co empirical coefficient

C solitary wave celerity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g H þ hð Þ

p� �
Dn50 equivalent cube length of the median armor
one
st

g gravitational acceleration

h water depth from bottom to the still water level

H uniform steady wave height

Hlimit steepness limit wave height

Hmo zeroth-moment wave height related to the area
neath the spectrum
w

be

Ho deepwater uniform wave height
Hrms root-mean-squared wave height for irregular
ave train
w

Hs significant wave height for irregular wave train

H1/3 average of the highest 1/3 waves in an irregular
ave train
w

H10% irregular wave height at which 10% of the
aves are higher
w

k wave number [=2p/L]
L local wave length

Lm wave length associated with mean irregular
ave period Tm
w

Lo deepwater wave length

Lom deepwater wave length associated with mean
egular wave period Tm
irr

Lop deepwater wave length associated with peak
ectral period Tp
sp

Lp wave length associated with peak spectral
riod Tp
pe

mf instantaneous flux of horizontal momentum
ross a unit area
ac

M coefficient for solitary wave theory (function of
/h)
H

MF depth-integrated wave momentum flux across a
it width
un

(MF)max maximum depth-integrated wave
omentum flux across a unit width
m

N coefficient for solitary wave theory (function of
/h)
H

pd instantaneous wave dynamic pressure at a
ecified position
sp

PT total instantaneous wave pressure

r dimensionless water depth [=N2h/g]

R maximum vertical runup from SWL

Sxx wave-averaged momentum flux (also known as
diation stress)
ra

t time

T wave period

Tp wave period associated with the spectrum peak
equency
fr

Tm mean wave period in irregular wave train

u instantaneous horizontal water velocity at a
ecified position
sp

Vw representative horizontal velocity near the still
ater level
w

x horizontal coordinate positive in the direction
wave propagation
of

z vertical coordinate directed positive upward
ith origin at the SWL
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zs vertical coordinate directed positive upward
w
ith origin at the sea floor
Greek Symbols

a beach or structure slope

D armor unit immersed relative density

g instantaneous sea surface elevation relative to
ill water level
st

gs instantaneous sea surface elevation relative to
e sea floor
th

l coefficient of dynamic viscosity

m coefficient of kinematic viscosity

n local Iribarren number (surf similarity
rameter)
pa

no deepwater Iribarren number

p mathematical Pi

q mass density of water

x circular wave frequency [=2p/T]
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